Localization of dystrophin gene transcripts during mouse embryogenesis
نویسندگان
چکیده
The spatial and temporal expression of the dystrophin gene has been examined during mouse embryogenesis, using in situ hybridization on tissue sections with a probe from the 5' end of the dystrophin coding sequence. In striated muscle, dystrophin transcripts are detectable from about 9 d in the heart and slightly later in skeletal muscle. However, there is an important difference between the two types of muscle: the heart is already functional as a contractile organ before the appearance of dystrophin transcripts, whereas this is not the case in skeletal muscle, where dystrophin and myosin heavy chain transcripts are first detectable at the same time. In the heart, dystrophin transcripts accumulate initially in the outflow tract and, at later stages, in both the atria and ventricles. In skeletal muscle, the gene is expressed in all myocytes irrespective of fiber type. In smooth muscle dystrophin transcripts are first detectable from 11 d post coitum in blood vessels, and subsequently in lung bronchi and in the digestive tract. The other major tissue where the dystrophin gene is expressed is the brain, where transcripts are clearly detectable in the cerebellum from 13 d. High-level expression of the gene is also seen in particular regions of the forebrain involved in the regulation of circadian rhythms, the endocrine system, and olfactory function, not previously identified in this context. The findings are discussed in the context of the pathology of Duchenne muscular dystrophy.
منابع مشابه
Zebrafish dystrophin and utrophin genes: dissecting transcriptional expression during embryonic development.
Some genes can encode multiple overlapping transcripts, and this can result in challenges in identifying transcript-specific developmental expression profiles where tools such as RNA in situ hybrisations are inapplicable. Given this difficulty, we have undertaken a preliminary analysis of the developmental expression profile of selected transcript...
متن کاملSpecific spatial and temporal distribution of retinoic acid receptor gamma transcripts during mouse embryogenesis.
Retinoic acid (RA), a putative morphogen in vertebrates, has profound effects on development during embryogenesis, chondrogenesis and differentiation of squamous epithelia. The distribution of the transcripts of the retinoic acid receptor gamma (RAR-gamma) gene has been studied here by in situ hybridization during mouse development from days 6.5 to 15.5 post-coïtum (p.c.). RAR-gamma transcripts...
متن کاملRestoration of dystrophin expression in mdx muscle cells by chimeraplast-mediated exon skipping.
The most common types of dystrophin gene mutations that cause Duchenne muscular dystrophy (DMD) are large deletions that result in a shift of the translational reading frame. Such mutations generally lead to a complete absence of dystrophin protein in the muscle cells of affected individuals. Any therapeutic modality that could restore the reading frame would have the potential to substantially...
متن کاملAccumulation in fetal muscle and localization to the neuromuscular junction of cAMP-dependent protein kinase A regulatory and catalytic subunits RI alpha and C alpha
Using probes specific for cAMP-dependent protein kinase, we have analyzed by in situ hybridization the patterns of expression of regulatory and catalytic subunits in mouse embryos and in adult muscle. RI alpha transcripts are distributed in muscle fibers exactly as acetylcholinesterase, showing that this RNA is localized at the neuromuscular junction. The transcript levels increase upon denerva...
متن کاملRepression-free utrophin-A 5’UTR variants
Mutation in the dystrophin gene results Duchenne Muscular Dystrophy (DMD), an X-linked fatal neuromuscular disorder. Dystrophin deficiency can be compensated by upregulation of utrophin, an autosomal homologue of dystrophin. But the expression of utrophin in adults is restricted to myotendinous and neuromuscular junctions. Therefore utrophin upregulation throughout the muscle fiber can only be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 119 شماره
صفحات -
تاریخ انتشار 1992